Package 'FormulR'

Title: Comprehensive Tools for Drug Formulation Analysis and Visualization
Description: This presents a comprehensive set of tools for the analysis and visualization of drug formulation data. It includes functions for statistical analysis, regression modeling, hypothesis testing, and comparative analysis to assess the impact of formulation parameters on drug release and other critical attributes. Additionally, the package offers a variety of data visualization functions, such as scatterplots, histograms, and boxplots, to facilitate the interpretation of formulation data. With its focus on usability and efficiency, this package aims to streamline the drug formulation process and aid researchers in making informed decisions during formulation design and optimization.
Authors: Oche Ambrose George [aut, cre]
Maintainer: Oche Ambrose George <[email protected]>
License: MIT + file LICENSE
Version: 1.0.0
Built: 2024-11-16 03:49:34 UTC
Source: https://github.com/cran/FormulR

Help Index


Perform ANOVA analysis

Description

This function conducts analysis of variance (ANOVA) to assess the impact of formulation parameters on key response variables.

Usage

anova_analysis(formulation_data)

Arguments

formulation_data

A data frame containing the formulation data.

Value

A summary of the ANOVA analysis results.

Examples

formulation_data <- data.frame(
  Excipient_Concentration = runif(100, min = 0, max = 1),
  Drug_Release = rnorm(100, mean = 50, sd = 10),
  Particle_Size = rnorm(100, mean = 100, sd = 20)
)
anova_analysis(formulation_data)

Assess batch-to-batch variability

Description

This function calculates the batch-to-batch variability of a specified parameter.

This function calculates the batch-to-batch variability of a specified parameter.

Usage

batch_variability(formulation_data, parameter)

batch_variability(formulation_data, parameter)

Arguments

formulation_data

A data frame containing formulation data.

parameter

The parameter for which batch-to-batch variability is calculated.

Value

The batch-to-batch variability of the specified parameter.

The batch-to-batch variability of the specified parameter.


Generate boxplot

Description

This function generates a boxplot to compare the distribution of a variable across different groups.

Usage

boxplot(formulation_data, x, y)

Arguments

formulation_data

A data frame containing the formulation data.

x

The name of the grouping variable.

y

The name of the variable.

Value

A boxplot.

Examples

formulation_data <- data.frame(
  Formulation_Type = sample(c("Type A", "Type B"), 100, replace = TRUE),
  Drug_Release = rnorm(100, mean = 50, sd = 10)
)
boxplot(formulation_data, "Formulation_Type", "Drug_Release")

Compare distributions across groups

Description

This function compares the distributions of a response variable across groups specified by group_var.

This function compares the distributions of a response variable across groups specified by group_var.

Usage

compare_distributions(formulation_data, group_var, response_var)

compare_distributions(formulation_data, group_var, response_var)

Arguments

formulation_data

A data frame containing formulation data.

group_var

The variable defining the groups for comparison.

response_var

The response variable to compare across groups.

Value

A boxplot comparing the distributions across groups.

A boxplot comparing the distributions across groups.


Compare means across groups

Description

This function compares the means of a response variable across groups specified by group_var.

This function compares the means of a response variable across groups specified by group_var.

Usage

compare_means(formulation_data, group_var, response_var)

compare_means(formulation_data, group_var, response_var)

Arguments

formulation_data

A data frame containing formulation data.

group_var

The variable defining the groups for comparison.

response_var

The response variable to compare across groups.

Value

Results of the t-test comparing means across groups.

Results of the t-test comparing means across groups.


Confidence intervals of drug release

Description

This function computes confidence intervals for drug release based on the provided formulation data.

This function computes confidence intervals for drug release based on the provided formulation data.

Usage

confidence_intervals(formulation_data)

confidence_intervals(formulation_data)

Arguments

formulation_data

A data frame containing formulation data.

Value

Confidence intervals for drug release.

Confidence intervals for drug release.


Control chart for quality control

Description

This function generates a control chart for monitoring the quality control parameter over time.

This function generates a control chart for monitoring the quality control parameter over time.

Usage

control_chart(formulation_data, parameter)

control_chart(formulation_data, parameter)

Arguments

formulation_data

A data frame containing formulation data.

parameter

The quality control parameter to monitor.

Value

A control chart for the specified quality control parameter.

A control chart for the specified quality control parameter.


Generate histogram

Description

This function generates a histogram to visualize the distribution of a variable.

Usage

histogram(formulation_data, x, bins = 20)

Arguments

formulation_data

A data frame containing the formulation data.

x

The name of the variable.

bins

The number of bins for the histogram.

Value

A histogram.

Examples

formulation_data <- data.frame(
  Drug_Release = rnorm(100, mean = 50, sd = 10)
)
histogram(formulation_data, "Drug_Release")

Perform hypothesis testing

Description

This function conducts hypothesis testing to compare means between different formulation groups.

Usage

hypothesis_testing(formulation_data)

Arguments

formulation_data

A data frame containing the formulation data.

Value

The results of the hypothesis testing.

Examples

formulation_data <- data.frame(
  Formulation_Type = sample(c("Type A", "Type B"), 100, replace = TRUE),
  Drug_Release = rnorm(100, mean = 50, sd = 10)
)
hypothesis_testing(formulation_data)

Perform regression analysis

Description

This function conducts regression analysis to model relationships between formulation parameters and response variables.

Usage

regression_analysis(formulation_data)

Arguments

formulation_data

A data frame containing the formulation data.

Value

A summary of the regression analysis results.

Examples

formulation_data <- data.frame(
  Excipient_Concentration = runif(100, min = 0, max = 1),
  Drug_Release = rnorm(100, mean = 50, sd = 10),
  Particle_Size = rnorm(100, mean = 100, sd = 20)
)
regression_analysis(formulation_data)

Generate scatterplot

Description

This function generates a scatterplot to visualize the relationship between two variables.

Usage

scatterplot(formulation_data, x, y)

Arguments

formulation_data

A data frame containing the formulation data.

x

The name of the x-variable.

y

The name of the y-variable.

Value

A scatterplot.

Examples

formulation_data <- data.frame(
  Excipient_Concentration = runif(100, min = 0, max = 1),
  Drug_Release = rnorm(100, mean = 50, sd = 10)
)
scatterplot(formulation_data, "Excipient_Concentration", "Drug_Release")

Summary statistics of formulation data

Description

This function calculates summary statistics of the provided formulation data.

This function calculates summary statistics of the provided formulation data.

Usage

summary_statistics(formulation_data)

summary_statistics(formulation_data)

Arguments

formulation_data

A data frame containing formulation data.

Value

Summary statistics of the formulation data.

Summary statistics of the formulation data.